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W
ith significant improvement in battery technology, electrically-powered autonomous
vehicles are being increasingly considered to develop vehicles to transport packages,

and critical material such as medical applications, for inter as well as intra-city operations.
Any air borne vehicle needs incorporating safety as key parameter of measure, and inclusion
of autonomy raises the critical need for safety under autonomous operations.

Management of faults and component degradation is key as complexity in au-
tonomous operations grow over the period of time. Therefore, in addition to basic

operational requirements, an autonomous electric vehicle should be able to make accurate
estimates of its current system health and take the correct decisions to complete its mis-
sion successfully. Real-time safety and state-awareness tools are therefore essential for the
vehicle to be able to reach its destination in a safe and successful manner.

The need for safety assurance and health management capabilities is particularly
relevant for aircraft electric propulsion systems, which are relatively new and with

limited historical to learn. They are critical systems requiring high power density along
with reliability, resilience, efficient management of weight, and operational costs. A model-
based fault diagnosis and prognostics approach of complex critical systems can successfully
accomplish the safety and state awareness goal for such electric propulsion systems, en-
abling autonomous decision making capability for safe and efficient operation. To identify
critical components in the system a Qualitative Bayesian approach using FMECA is im-
plemented. This requires the assessment of some quantities representing the state of the
electric unmanned aerial systems (e-UAS), as well as look-ahead forecasts of such states
during the entire flight, presented in form of safety metrics (SM).

In-service data and performance data gathered from degraded components sup-
ports diagnostic and prognostic methods for these systems, but this data can be

difficult to obtain as weight and packaging restrictions reduce redundancy and instrumen-
tation on-board the vehicle. Therefore, an model-based framework should be capable or
operating with limited data.

In addition to data scarcity, the variability of such complex critical systems re-
quires the model-based framework to reason in the presence of uncertainty, such as

sensor noise, and modeling imperfections. Quantification of errors and uncertainties in the
measured states and quantities is therefore a fundamental step for a precise estimation
of such SMs; un-modeled uncertainty may result in erroneous state assessment and un-
reliable predictions of future states of e-UAVs. Typical, centralized model-based schemes
suffer from inherent disadvantages such as computational complexity, single point of failure,
and scalability issues, and therefore may fail in such a complex scenario.

This paper presents a methodology for developing a system level diagnostics and
prognostics approach using a Qualitative Bayesian FMECA approach along with a

formal uncertainty management framework for an e-UAS. In this work we demonstrate
the efficacy of the framework to predict effects of sub-system level degradation on vehicle
operation incorporating uncertainty management to predict future behavior under different
operating conditions.
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I. Introduction

With accelerated improvement in battery technology, progress in developing a practical vehicle to deliver
packages as well as critical items such as medical services has increased proportionally. The trend is inclined
more towards operating in a fully- or semi-autonomous mode. This inclusion of autonomy raises the critical
need for incorporating safety under autonomous operations into system operations. An autonomous electric
vehicle should be able to make accurate estimates of its current health state and take the right decisions to
deliver the critical package on time to complete its mission successfully . This requires assessing the health
state of its own critical systems, which in this case is the electrical propulsion system, for it to be able to
reach its destination in a safe and successful manner.

Electric propulsion systems for aircraft require reliability, resilience, and high power density. These
systems must also manage weight, complexity, and operational costs. As more aircraft transition to electric
propulsion systems, the management of faults and component degradation becomes increasingly important.
Implementation of a diagnosis and prognosis framework of complex critical systems enables their safe and
efficient operation which monitors and updates health state of these critical systems. This is done by
developing a combined Failure mode, effects and criticality analysis (FMECA) based framework wherein
sub-systems and components are selected for health monitoring based on their criticality and probability of
failure.

Typically, model-based schemes are centralized approaches that suffer from inherent disadvantages such
as computational complexity, single point of failure, and scalability issues. Distributing the task within the
overall system framework addresses these issues. To this end, this paper presents development of the process
flow to implement a health monitoring framework for an electric unmanned aerial systems (e-UAS). The
presented framework is limited to an electrical power-train of the e-UAS.

In order to perform system-level prognostics on electric power-train systems, the first step is to identify
subsystems that have higher probability failure using a combined FMECA and Qualitative Bayesian ap-
proach. A distributed diagnosis approach is implemented to detect and diagnose the power-train subsystem
1 that has failed which then instantiates the prognoser for estimating remaining useful life (RUL) of the faulty
system or component. In addition, quantification and management of uncertainty is equally important since
it drives the performance of both diagnostic and prognostic systems. Embedding uncertainty quantification
techniques is particularly relevant for the proposed frameworks, which leverages several models and algo-
rithms, each one of those with different levels of model abstractions, simplifying hypotheses, and accuracy.
Therefore, this paper also introduces a preliminary assessment of the sources of uncertainty affecting the
framework, and a discussion on uncertainty representation techniques for the key elements of the system;
battery, electronic speed controller (ESC), and motors being used in an e-UAS.

The rest of the paper is organized as follows. Section II outlines motivation and background for this
work. Section III discuss FMECA framework developed for the power-train. Section IVdiscusses the use
of FMECA with quantitative and qualitative Bayesian analysis to enhance fault isolation and diagnosis.In
Section V details of electric modeling power-train subsystems of a multi-rotor vehicle is discussed. Section VI
and VII describes the distributed diagnosis and prognostics approaches. Section VIII discuss uncertainty
quantification and implementation for electric power-trains. Conclusions and future work are discussed in
Section IX.

II. Motivation and Background

The fundamental components of a power-train in an electrically powered rotor-craft include key electrical
components such as batteries, motors, and power electronics such as electronic speed controllers (ESC) and
conditioning electronic systems (CES). The motivation for this work evolved from flight operations with the
all-electric Edge 540T UAV2 fixed wing UAV, where during test flights abnormally high current draw was
observed from one of the batteries. Investigation of the flight data and troubleshooting confirmed that one of
the ESC’s on the UAV had aged and degraded since the vehicle was commissioned, leading to degradation in
UAS operational performance. This lead to studies for investigating other systems in an electrical power-train
and formulate methodology to implement an health monitoring framework.

Earlier research work presented in3,4 focused on individual systems and components to implement prog-
nostics methodologies. In the later approaches effects of component-level degradation on the system as a
whole5,6 were studied to implement the prognostics framework. The development of new models and in-
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Figure 1. Process Flow Chart of the implemented approach to UAV Health Management

tegration with previous models enables to study and identify cascaded effects of degradation on connected
power-train systems during operation. In Hogge et. al ,2 implementation of prognostic framework to batteries
in fixed wind e-UAS was studied.

As briefly discussed in I in this work a process flow as shown is Fig. 1to implement integrated FMECA and
Qualitative Bayesian approach incorporating distributed fault diagnosis and prognosis to Health monitoring
is presented. In addition uncertainty quantification techniques are embedded into the framework to take
into account of model abstractions, simplifying hypotheses, and estimation accuracy.

III. e-UAS Powertrain FMECA

Functional Hazard analysis (FHA) of a given system is the first step in a process to assess any associated
risk of failure in the system. The output results obtained from the hazard analysis processes assess the
different type of hazards along with their probability of failures. These can be qualitative i.e high, low as
well as quantitative i.e. 1 or 0. In this work and qualitative approach is being implemented. The probability
of failure in a system can be linked with multiple events or cascading effects down the system finally leading
to an accident. A combined sequence of such activities is called a scenario. Depending upon the types of
system faults a single system can have different potential accident scenarios which can range from high - low
probability of occurrence.

FMECA is a bottom-up, inferred analytical method which includes criticality analysis, used to map the
probability of failure modes with the severity of their consequences. The resultant map shows failure modes
with in relationship with probability and severity of consequences.

Fig. 2 shows a schematic line diagram for a quad-rotor e-UAS propulsion system. The system as show
consists of four motors (M1−4), which are controlled by four ESC controllers (ESC1−4). All the four motor
controllers are governed by power controller system (PCS) and battery pack consisting of several smaller
packs. Though in a real operational system each of the battery pack will be monitored in this work B1-B4
are considered as a single battery pack.
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Figure 2. Schematic of an Quad-rotor Electric UAS Propulsion System

IV. Qualitative Bayesian Theorem Approach

Bayesian theorem concepts can be implemented using quantitative as well as qualitative methods.7,8 It
is very important to know prior probabilities based on operational knowledge and feedback from SME’s
to implement the approach. Details of known failure probabilities for an e-UAS system are as shown in
Table. 1. This can be expressed categorically as low (less likely than 10%), medium (between 10% and 66%),
high (between 67% and 90%) or extreme (more likely than 90%). For example, if battery SOC has a high
probability of failure, then in this case, if an fault observed due to voltage decrease it can be detected/isolated
as an SOC fault as mapped in the FMECA table.

If the probability is in one of the intermediate categories, then further analysis is required which is
detected by the fault diagnosis framework. Further once the fault is detected and isolated the next step is to
make a prognostics estimation for remaining useful time (RUL) till the predetermined lower bound threshold
of SOC of a battery pack is reached.
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Table 1. FMECA for e-UAS Power-train System

Component Faults Root Cause Effect on UAV Effect on Airspace Severity Probability
of Occur-
rence

Safety
Critical

Battert Pack SOC Operational Conditions Directly affects operation
of the power train system

In case the SOC goes below set low
threshold and UAV is not able to
do a safe landing may violate safety
with crash landing/ may interfere in
path of other UAV

High High High

Battery Pack SOH Operational conditions,
loading profiles

Aging in the batteries may
not directly affect other
systems

The UAV may not able to do certain
maneuvers within required time pe-
riod

High High High

Motor (Single) Low insula-
tion resistance

Operational conditions,
loading profiles

Aging in the batteries may
not directly affect other
systems

The UAV may not able to do certain
maneuvers within required time pe-
riod

High High High

Motor (Single) Bearing
Faults, mass
unbalance

Operational conditions,
loading profiles

Aging in the batteries may
not directly affect other
systems

The UAV may not able to do certain
maneuvers within required time pe-
riod

High High High

Motor (Single) Power Con-
sumption

change in winding resis-
tance, bearing faults

High draw currents de-
crease the battery RUL
shortening flight time con-
siderably

In case the SOC goes below set low
threshold and UAV is not able to
do a safe landing may violate safety
with crash landing/ may interfere in
path of other UAV

Medium Medium Low

Motor (Multiple) Power Con-
sumption,
Low in-
sulation
resistance,
bearings

change in winding resis-
tance, bearing faults

High draw currents de-
crease the battery RUL
shortening flight time con-
siderably

In case the SOC goes below set low
threshold and UAV is not able to
do a safe landing may violate safety
with crash landing/ may interfere in
path of other UAV

High Low High

ESC (Single) Power Con-
sumption

operational stress, High
electrical, thermal stress on
the components

Change in switching fre-
quency, MOSFET degra-
dation, stuck faults

The UAV may not able to do certain
maneuvers within required time pe-
riod and flight profile

Medium Low Low

ESC (Multiple) Power Con-
sumption

operational stress, High
electrical, thermal stress on
the components

Change in switching fre-
quency, MOSFET degra-
dation, stuck faults

The UAV may not able to do certain
maneuvers within required time pe-
riod and flight profile

High Low High

CES Filtering
Capaci-
tor/MOSFET
failures

Operational stress, High
electrical, thermal stress on
the components

Directly affects operation
of the power train system

The UAV may not able to do certain
maneuvers within required time pe-
riod and flight profile

High Low High
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V. Electrical Propulsion System Modeling

With reference to Figure. 1 the initial steps for FMECA development and Qualitative Bayesian framework
are discussed in the prior sections. In this work an model based Fault Detection and prognostics estimation
methodology9 is being implemented. This is the last OFF-LINE step in the process before the framework
being implemented for the ON-LINE process. Modeling methodologies used to represent system dynamics
are generally classified as: (i) empirical models; (ii) engineering models; (iii) multi-physics models; and (iv)
molecular/atomist models. Once the sub-systems and components are identified and ranked based on the
failure probabilities the next is to develop the models for these sub-systems.

In this section individual sub-system models are developed for the Li-ion batteries, ESC, CES and Brush-
less DC (BLDC) motor system respectively to be used for the ON-LINE process.

The developed system models are then connected to form the entire electrical propulsion system for
simulation in MATLAB. MATLAB Simulink 2017 is used for simulating the entire system as well as injecting
faults.

A. Battery System

A battery is a collection of electrochemical cells that convert between chemical and electrical energy. Each
cell consists of a positive electrode and a negative electrode with electrolyte. In this paper, we focus on Li-ion
cells. The electrolyte enables lithium ions (Li+) to diffuse between the positive and negative electrodes. The
lithium ions insert or deinsert from the active material depending upon the electrode and whether the active
process is charging or discharging.10

In this work, we use an electrochemistry-based model developed for Li-ion cells in our previous work.11

Unlike other electrochemistry-based models that rely on complex partial differential equations that are un-
suitable for online estimation and prediction algorithms, this model uses only ordinary differential equations,
and is fast enough for real-time use. In this section, we briefly summarize this model and describe its key
features.

The voltage terms of the battery are expressed as functions of the amount of charge in the electrodes.
Each electrode, positive (subscript p) and negative (subscript n), is split into two volumes, a surface layer
(subscript s) and a bulk layer (subscript b). The differential equations for the battery describe how charge
moves through these volumes. The charge (q) variables are described using

q̇s,p = iapp + q̇bs,p (1)

q̇b,p = −q̇bs,p + iapp − iapp (2)

q̇b,n = −q̇bs,n + iapp − iapp (3)

q̇s,n = −iapp + q̇bs,n, (4)

where iapp is the applied electric current The q̇bs,i term describes diffusion from the bulk to surface layer for
electrode i, where i = n or i = p:

q̇bs,i =
1

D
(cb,i − cs,i), (5)

where D is the diffusion constant. The c terms are Li-ion concentrations:

cb,i =
qb,i
vb,i

(6)

cs,i =
qs,i
vs,i

, (7)

Here, cv,i is the concentration of charge in electrode i, and vv,i is the total volume of charge storage capability.
We define vi = vb,i + vs,i. Note now that the following relations hold:

qp = qs,p + qb,p (8)

qn = qs,n + qb,n (9)

qmax = qs,p + qb,p + qs,n + qb,n. (10)
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Figure 3. Battery voltage during 1 A discharge cycle.

We can also express mole fractions (x) based on the q variables:

xi =
qi
qmax

, (11)

xs,i =
qs,i
qmax
s,i

, (12)

xb,i =
qb,i
qmax
b,i

, (13)

where qmax = qp + qn refers to the total amount of available Li-ions. It follows that xp + xn = 1. For Li-ion
batteries, when fully charged, xp = 0.4 and xn = 0.6. When fully discharged, xp = 1 and xn = 0.12

The overall battery voltage V (t) consists of several electrochemical potentials. At the positive current
collector is the equilibrium potential VU,p. This voltage is then reduced by Vs,p, due to the solid-phase ohmic
resistance, and Vη,p, the surface overpotential. The electrolyte ohmic resistance then causes another drop
Ve. At the negative electrode, there is a drop Vη,n due to the surface overpotential, and a drop Vs,n due to
the solid-phase resistance. The voltage drops again due to the equilibrium potential at the negative current
collector VU,n.

The state vector, input vector, and output vector of the EOD model are defined follows:

xEOD(t) =
[
qs,p qb,p qb,n qs,n V ′o V ′η,p V ′η,n

]T
, (14)

u(t) =
[
iapp

]
, (15)

y(t) =
[
V
]
. (16)

Detailed equations for each voltage equations and parameter values for a typical Li-ion cell are given in
Daigle et al.11

An example discharge cycle is shown in Fig. 3. The cell is fully charged at 4.2 V and is discharged
at 1 A. At 8000 s, the voltage hits the lower voltage limit, 3.2 V, which defines end-of-discharge (EOD)
indicating lower limit of operation. At this point the load is removed and the cell voltage recovers back
to the equilibrium potential. Here, we use 3.2 V as the voltage threshold defining EOD. In this case, the
capacity is computed as the discharge time (7630 s) times the applied current (1 A), yielding in this case
2.12 Ah.

Note that capacity can only be measured consistently for a discharge cycle at reference conditions, since
measured capacity is a nonlinear function of the load and environmental conditions. In this work, reference
conditions are defined by a 1 A discharge at room temperature.

B. Electronic Speed Control System

For the purposes of this research the ESC is modeled as an ideal power inverter employing sinusoidal pulse
width modulation (SPWM) and half bridge drivers for each of three phases within a control block. Addition-
ally, power switching devices are also modeled as ideal within the switching function block which represents
the commutation functions of the ESC. This enables the study of switching faults, including open-circuit
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faults and short-circuit faults, and switching frequency faults such as shoot-through faults. This modeling
scheme is representative of general ESC operation for PDC motors which involves battery input, pulse width
modulation (PWM) input to control frequency, bridge drivers, and a semiconductor commutation circuit
made up of switching transistors. Details of model development are discussed in .5

Within the switching function block, F1, F2 and F3 are the PWM signals from the control block and are
multiplied by the input voltage V .5 This amplifies the PWM signal that drives the 3 phase inverter. The
output of the function is a 3-phase voltage, Va, Vb, and Vc, that is then connected to a wye motor function
block in MATLAB given by Equation 17. F1, F2 and F3 are the outputs from the controlled block while
vab, vbc, vca are the winding voltages between respective phases. 1 −1 0

0 1 −1

−1 0 1

V
F1

F2

F3

 =

vabvbc
vca

 (17)

The developed model is used to both simulate nominal as well as fault injected scenario operation of
ESC. The data generated by this model in simulation can be directly compared with empirical data from
laboratory testing.

C. Motor System

The dynamic model of the motor describes a three-phase brushless DC motor, with wye-connected stator
windings and a permanent magnet as the rotor. This dynamic model only describes the mechanical device,
and assumes that the electronic speed controller provides a given input to the three-phase terminals. Details
of the developed model are discussed in .5

If the three phase input voltage and back-emf trapezoids are given, then Equations 18, 19, and 20 can
be used as the dynamic equations of the brushless DC motor .5

dωm
dt

=
1

J
(−Bωm + (Te(e, i)− Tl)), (18)

where J is the inertia, B is the frictional coefficient, and Tl is the load torque on the rotor. Additionally,
the rotor position, θm is

dθm
dt

=
p

2
ωm, (19)

where p is the number of poles, and

d

dt

[
ia

ib

]
= − Rs

LM

[
ia

ib

]
+

1

LM

[
2 1

1 1

][
vab

vbc

]
− 1

LM

[
2 −1 −1

1 0 −1

]eaeb
ec

 . (20)

VI. Model Based Diagnostics Approach

Figure 4. The distributed diagnosis architecture.

Model based diagnosis of complex systems enables their safe and efficient operation. Most model-based
diagnosis schemes are centralized approaches that suffer from inherent disadvantages such as computational
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complexity, single point of failure, and scalability issues. Distributing the diagnosis task addresses these
issues. This work is an application paper that discusses the implementation of our distributed health moni-
toring approach developed as part of earlier work.13

Our distributed diagnosis scheme does not use a centralized coordinator, and each local diagnoser gen-
erates globally correct diagnosis results through local analysis, by only communicating a minimal number
of measurements with other local diagnosers. The diagnoser design is based on the second algorithm pre-
sented in13 that creates a partition structure and local diagnosers simultaneously. For each local diagnoser,
separate particle filter (PF) based inference algorithms for fault detection, isolation, and identification are
implemented. The quantitative diagnosis scheme is employed in combination with a qualitative fault isola-
tion scheme to improve diagnosis efficiency. The schematic of our distributed diagnosis approach is shown in
Fig. 5. Each local diagnoser performs three primary tasks: (i) fault detection, (ii) qualitative fault isolation
(Qual-FI), and (iii) quantitative fault hypothesis refinement and identification (Quant-FHRI).

The fault hypothesis refinement and identification (FHRI) scheme is invoked when either the fault hy-
potheses set is refined to a pre-defined size, k, a design parameter, or a pre-specified s simulation time-steps
have elapsed. For each fault hypothesis that remains when FHRI is initiated, a faulty system model is
generated by extending the nominal model used by the local diagnoser to include the fault parameter as a
stochastic variable. Again, a PF scheme for each fault model tracks the faulty observed behavior, taking
as input the measurements from time td − ∆max, where ∆max ≥ td − tf is the maximum delay possible
between the time of fault occurrence, tf , and the time of fault detection, td. For each PF, a Z-test is used to
determine if the deviation of a measurement estimated by the PF from the corresponding actual observation
is statistically significant.

As more observations are obtained, ideally the PF using the correct fault model will eventually converge
to the observed measurements, while the observations estimated using the incorrect fault models would
gradually deviate from the observed measurements. We assume that the particles for the true fault model
will converge to the observed measurements within sd time steps of its invocation. Since the fault magnitude
is included as a stochastic variable in every fault model, the magnitude of the true fault (i.e., the % bias) is
considered to be that estimated by the PF for the true fault model.

VII. Model-based Prognostics Approach

In this section, the end-of-life (EOL) estimation problem is methodically devised using the model-based
prognostics framework. The formulation of the problem is based on our earlier work discussed in .4 Each of
the sub-system discussed presents how the developed models can be used for the ON-LINE process.

A. Problem Formulation

The system model is generally defined as :

x(k + 1) = f(k,x(k),θ(k),u(k),v(k)), (21)

y(k) = h(k,x(k),θ(k),u(k),n(k)), (22)

where k is the discrete time variable, x(k) ∈ Rnx is the state vector, θ(k) ∈ Rnθ is the unknown parameter
vector, u(k) ∈ Rnu is the input vector, v(k) ∈ Rnv is the process noise vector, f is the state equation,
y(k) ∈ Rny is the output vector, n(k) ∈ Rnn is the measurement noise vector, and h is the output equation.a

The unknown parameter vector θ(k) is used to capture explicit model parameters where the values are
time-varying stochastically.

The goal of prognostics methodology is to predict the phenomenon event E that is defined with respect
to the states, parameters, and inputs of the system. The event is defined as the earliest instant that event
threshold TE : Rnx ×Rnθ ×Rnu → B, where B , {0, 1}, goes from the value 0 to 1. That is, the time of the
event kE at some time of prediction kP is defined as

kE(kP ) , inf{k ∈ N : k ≥ kP ∧ TE(x(k),θ(k),u(k)) = 1}. (23)

For example in case of a battery system model there are two prognostics problems, and two corresponding
system models, EOD and EOL respectively. These may vary for each sub-system for which the framework

aBold typeface denotes vectors, and na denotes the length of a vector a.
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Figure 5. Prognostics Architecture for sub-systems

is applied. For EOD prediction, the event E represents EOD determined by a voltage threshold; the battery
is considered to be at EOD when the voltage goes below a set voltage threshold limit. In this case, an
assumption is done that there are no unknown parameters (i.e., θ = ∅). For EOL prediction, the event E
represents EOL and is determined by a set capacity lower threshold for a reference discharge.

B. Prognostics Architecture

In a model-based prognostics architecture,14,15 there are two sequential problems, (i) the estimation problem,
which determines a joint state-parameter estimate p(x(k),θ(k)|YkP

k0
) based on the history of observations up

to time k, denoted as Yk
k0

, and (ii) the prediction problem, which determines at prediction time kP , using

p(x(k),θ(k)|YkP
k0

), p(UkP ), p(VkP ), and p(ΘkP ), the probability distribution p(kE(kP )|YkP
k0

). Here, UkP

denotes the future system inputs from kP on, VkP denotes the future process noise values from kP on, and
ΘkP denotes the future unknown parameter values from kP on.

In this work, an assumption is made where ΘkP is known exactly, VkP is zero, and UkP is known exactly,
in order to focus on validation of the aging models and the performance of the associated predictions. A
general framework for dealing with all sources of uncertainty in prognostics is discussed in the next section.

The overall combined EOD/EOL prognostics architecture is shown in Fig. 5. In discrete time k, the
system is provided with inputs u(k) (current) and provides measured outputs y(k) (voltage). There are two
models used for the two different prediction problems: one for EOD (with subscript EOD), and one for EOL
(with subscript EOL). The age parameter estimation block estimates the states for the EOL model, xEOL(k),
based on the data from the previous discharge cycle. In the context of the EOD model, xEOL(k) are the
aging parameters and assumed to be constant for a given discharge. The state estimation block estimates
states for the EOD model, xEOD(k), using the latest estimates of the aging parameters. EOD prediction
computes the probability distribution of the EOD time, kEOD, using the latest state estimate and aging
parameter estimates. The aging rate parameters, θEOL(k) for the EOL model are estimated based on the
estimated aging parameters over past discharge cycles, and parameterize how quickly the aging parameters
change in time. EOL prediction computes the probability distribution of the EOL time, kEOD, using the
current estimates of the aging and aging rate parameters.

VIII. Uncertainty Representation

The reasons to build frameworks capable of accommodating uncertainty are several, and have already been
extensively discussed in literature.16 First, the selection of certain model granularity, together with the choice
of the state variables, defines the representation capabilities of the health management system. Un-modeled
physical phenomena and states of the system that are ignored by the model contribute to uncertainty in the
monitored state variables and model parameters. The state variables are, in most cases, un-observable, and
therefore estimators from available sensor data of such hidden states are necessary to characterize the current
condition of the system. Tools and sensors utilized to measure the observable quantities are themselves
affected by limited accuracy and precision, which may also depend on environmental conditions, which
are aleatory in nature. Therefore, it is clear how the comprehensive diagnostic and prognostic framework
presented in this paper requires uncertainty quantification methods to establish the confidence over the
estimated variables, as well as reduce uncertainty in the prediction.

The work discussed in this section is inspired by the approach for uncertainty quantification of vehicle
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health recently proposed in,17 and it concentrates on representing uncertainty within elements of the pow-
ertrain model. Uncertainty quantification for each element of the system is left to future research, where
assessment of model performance against experimental evidence will aid the quantification process.

A. Uncertainty in the battery model

The output voltage represents the quantity of interest, which defines the energy introduced in the powertrain
to produce the desired torque. A sampling-based approach is suggested for the battery model, given its
nonlinear state-space model presented in Section V.A. The state vector in the first row of Eq. 16 actually
contains two independent variables, that is the amount of Li-ions on the positive side of the surface qs,p and
bulk qb,p of the cell, respectively. Since qs,n, qb,n, and the different voltages V ′ are derived quantities, they
also become random variables because of their relationship to qs,p and qb,p.

The uncertainty affecting the number of Li-ions on the elements of the cell is modeled by perturbations
of the state transition equation, using properly-scaled random shocks:

qs,p,k = qs,p,k−1 + q̇s,p,k−1∆tk−1 + σqs,p
√

∆tk−1 r1 ,

qb,p,k = qb,p,k−1 + q̇b,p,k−1∆tk−1 + σqb,p
√

∆tk−1 r2 .
(24)

The perturbations are represented by σqs,p r1, σqb,p r2, where ri, i = {1, 2} are random realizations from a

standard normal distribution. They are scaled by
√

∆t so that the variance of the stochastic processes scales
linearly with time. Such a scaling is in agreement with formulations of stochastic differential equations.18

It should be noticed that the behavior of the stochastic processes in (24) is close to a diffusion process,
being the variables unbounded, and more advanced representations could be used to better represent the
movements of the ions at the very early stage and end of the battery life.

B. Uncertainty representation in the ESC model

The ESC circuit model is composed of three fundamental elements, as already presented in Eq. (17). The
SPWM signals Fi, i = {1, 2, 3}, the switch matrix, and the voltage from the battery. The frequency carrier
of the SPWM signals may slowly decrease as time passes by because of MOSFET degradation.5 This implies
a monotonic behavior of the SPWM carrier frequency, and therefore its uncertainty should not be represented
by a diffusion process similar to the one utilized in A, but it should reflect its monotonic behavior. Decreasing
carrier frequencies could be modeled using a negative, log-Normally distributed rate of change, as in Eq.
(25).

fk = fk−1 −
df

dt

∣∣∣∣
k−1

exp η

η ∼ N
(
−σ2

η/2, σ
2
η

) (25)

The correction of the mean value of η, i.e., −σ2
η/2, ensures that the stochastic process is centered on its

mean value regardless of the selected variance σ2
η, i.e.,

IE

[
df

dt

∣∣∣∣
k

exp η

]
=

df

dt

∣∣∣∣
k

. (26)

This degradation is expected to be slow, and its effect likely to be negligible in a single flight.
Switch matrix failures may be easily represented using typical reliability analysis,19 therefore using time-

dependent failure rates λ(t), mean time between-failures, or similar quantities. When a switch fails, the
corresponding switch matrix element in (17) becomes zero, representing the effect of a switch that no longer
closes (or opens).

C. Uncertainty representation in the motor model

Given the consolidated structure of the motor model, widely utilized to describe DC motor dynamics,
uncertainty in the model structure is not considered in this preliminary work. Moreover, the uncertainty on
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the external loading is not discussed and left to future research. In this work, we assume the motor model
parameters could be described by random variables to encapsulate motor parameter uncertainty. Because
of their physical meaning, all model parameters θ = [B, J,Rs, LM ]T have to be positive, so θi ∈ IR+ ∀ θi ∈
θ. Gaussian distributions may not be suitable to describe the uncertainty on those model parameters,
since Gaussian distributions are unbounded. This may create problems especially in real-time parameter
estimation and updating, Bayesian filtering, etc. where erroneous measures or spurious correlations can lead
the estimations outside of the (physical) parameter support space. Weibull, log-Normal and Gamma are
examples of distributions suitable for positive-definite model parameters.

IX. Discussion and Comments

In this work an framework for e-UAS health monitoring is developed integrating an FMECA based
Qualitative Bayesian approach with Diagnostics and Prognostics framework. An e-UAS system comprises
of several sub-systems and components. Before implementing a tool like Diagnostics and Prognostics on-
board an e-UAS vehicle it is very important to identify essential sub-systems components which have a high
probability failure rate. This enables the diagnoser tool to identify and isolate systems in case of any failure
or degradation. Once the culprit is accurately identified an prognoser is instantiated to estimate remaining
useful life and further take decisions based on operational requirements.

Implementing such a framework especially on e-UAS vehicles reduces the computational power require-
ment on-board where is only systematically identified sub-system and components are monitored instead
of the whole set. In addition the framework also incorporates sensor noise, modeling imperfections and
estimation errors.

In this work an Qualitative Bayesian approach was discussed. Our next research goal is working towards
a combined qualitative and quantitative approach for e-UAV. Work in currently underway to evaluate the
developed FEMCA to quantitative failure rates and probabilities to be updated in table and implement in
the Bayesian framework.
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